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 In experiments it was found by Al-Khafaji that the normally steady wake at Reynolds
 number 29 (Re based on diameter  d ) could be made to oscillate by the inclusion of a small
 diameter ( d  / 8) control rod at certain positions on the centreline of the near wake .
 Following this work an existing Navier – Stokes solver was applied to the same problem .
 The control rod was modelled by inserting a vortex pair at a fixed point on the wake axis at
 each side of this point .  The vortices dif fuse as they are convected downstream .  An
 asymmetry developed in the vortex pair and an oscillating wake was found for a range of
 positions on wake axis .  The instability was investigated by observing the onset and
 exponential growth of oscillations in the asymmetry of the velocity field ,  the vorticity and
 the cylinder lift coef ficient .  Results are presented which show that the driving force at
 Re  ,  Re c  is the asymmetry in the near wake which convects downstream .  Interaction with
 the control rod produces oscillations at the rod which feed back to the cylinder to initiate
 the exponential growth of  C L .  At Re  .  Re c  the exponential growth of  C L   takes place
 without a control in the wake .  The growth rate ,  the frequency and  C L   as functions of Re
 are determined and compared with other work .

 ÷   1997 Academic Press Limited

 1 .  INTRODUCTION

 D ESPITE THE IMMENSE LITERATURE  on cylinder wake flows ,  publications in recent years
 have been on the increase .  This is not only because of practical interest in separated
 flows and control mechanisms ;  much interest also stems from concern about stability of
 the flows and transition to turbulence .  Many studies in the past which were aimed at
 the fundamental description of the near wake of the cylinder are now found to be of
 significance as far as wake instability is concerned .  We may mention ,  for example ,  the
 finding of Coutanceau & Bouard (1977) that for 14  ,  Re  ,  40 a back flow velocity ,
 distributed similarly through this range ,  reaches a value of 0 ? 08 U ( U  5  freestream
 speed) at the Re at which wake oscillations start .  Taneda (1963) and Nishioka & Sato
 (1978) found that transverse cylinder oscillations produce wake oscillations which
 convect downstream ,  and that for Re  .  20 the oscillation grew exponentially in the
 downstream direction .  The critical value of Re c ,  the Re at which wake oscillation starts ,
 is increased by the ef fect of confining walls .  Shair  et al .  (1963) found that Re c  could be
 increased to 135 by confinement up to 20% .  Koch (1985) showed the ef fect of blockage
 ratio on his stability analysis .  By varying the side wall distance from a symmetric wake
 flow ,  a bifurcation point was discovered :  this was absent without interference from the
 side walls .  Following the work of Leal & Acrivos (1969) and Wood (1963) ,  Bearman
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 T ABLE  1
 Experimental results of the critical gap between an interference element and the back of a

 circular cylinder for the suppression of vortex shedding

 Source  Re
 Range

 Gap size
 g  / a

 Plate length
 L p  / d

 Interference
 element

 Test
 rig

 Roshko (1954)

 Gerrard (1978)

 Grove  et al .  (1964)

 Unal &
 Rockwell (1988)

 Thomas &
 Kravs (1964)

 Ishigai
 et al .  (1972)

 Zdravkovich (1977)

 Zdravkovich &
 Stanhope (1972)

 14  500

 150

 25 – 300

 140 – 5000

 62 – 500

 8  3  10 3

 8 ? 3  3  10 4

 1  3  10 5

 5 ? 4

 5 ? 4

 5 ? 0

 4 ? 6

 5 ? 2

 5 ? 6

 5 ? 0

 5 ? 0

 1 ? 14

 1

 1 – 4

 24

 —

 —

 —

 —

 Splitter
 plate

 Splitter
 plate

 Splitter
 plate

 Splitter
 plate

 Circular
 cylinder
 Circular
 cylinder
 Circular
 cylinder
 Circular
 cylinder

 Wind
 tunnel
 Water
 tank
 Oil

 tunnel
 Water
 tunnel
 Wind
 tunnel
 Wind
 tunnel
 Wind
 tunnel
 Wind
 tunnel

 (1967) found that for bleed coef ficients (base bleed speed / freestream speed) greater
 than 0 ? 15 the steady value of the base pressure was reached and that for coef ficients
 greater than 0 ? 095 the formation region was extended .  The ef fect of splitter plates in
 the wake with a gap between the plate and the cylinder has been investigated by many
 workers .  Some eight workers ,  shown in Table 1 ,  have found a critical gap size below
 which shedding from circular cylinders is suppressed .  The mean critical gap size was
 5 ? 1  Ú  0 ? 3 radii .

 Strykowski & Sreenivasan (1985) reported on a series of intriguing results .  They
 found that vortex shedding can be suppressed at least over a limited range of Reynolds
 number by the advantageous positioning in the near wake of a second much smaller
 cylinder parallel to the first .  Suppression was achieved in the range 40  ,  Re  ,  80 when
 the control cylinder or rod is in the shear layer bounding the near wake .  Mildly heating
 the control rod with direct current considerably widens the range of positions in the
 wake which produce steady flow and the area increases with increased heating .  Heating
 is more ef fective when the rod is in the shear layer but also functions with the rod on
 the wake axis .  With the unheated rod they observed that flow is diverted into the near
 wake region by the control rod .  Not unexpectedly the whole character of the instability
 of the near wake is thus changed but only for restricted positions .  In an extended
 account Strykowski & Sreenivasan (1990) found that the control is ef fective also in the
 wakes of cylinder shapes with fixed separation points and that two symmetrically
 placed control rods are more ef fective than one .  Their results of a numerical analysis
 show that the control rod in the shear layer spreads the velocity gradient ,  reducing
 maximum vorticity .  They suggest that the flow stability is directly related to the
 maximum vorticity in the shear layers ,  but other factors such as freestream disturbance
 level and body vibration also determine the critical Re .  Beyond the range in which the
 shedding is suppressed ,  the control rod reduces the shedding frequency .  Spectra were
 measured at 50 diameters downstream with the shedding suppressed by placing the
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 control rod in its optimum position .  These show peaks in the spectrum at a somewhat
 lower frequency than the natural shedding frequency ,  and at the higher Re these are
 accompanied by their first harmonic .  This seems to support their contention that the
 mean velocity distribution is the most significant aspect of the growth of disturbances
 which is a process essentially independent of the body .  They maintain that ,  in direct
 contrast to the experiments we report here ,  the stable wake at Re  ,  Re c  cannot be
 made unstable with a control rod in the wake .

 Recent applications of stability theory have concentrated on bluf f-body wakes ,  and
 these are to be found in the publications of Koch (1985) ,  Huerre & Monkewitz (1985) ,
 Triantafyllou  et al .  (1986) ,  Monkewitz & Nuygen (1987) ,  Chomaz  et al .  (1988) ,
 Monkewitz (1988) and reviewed by Huerre & Monkewitz (1990) .

 There is now increasing evidence that wake flows exhibit self-sustained oscillations
 by feedback from the near wake to the body ,  [Strykowski & Sreenivasan (1990) being
 one exception to this view] .  Monkewitz (1988) ,  used the criterion which requires the
 behaviour of the temporal growth rate of the dominant discrete mode at the location of
 the impulsive source .  His analysis of the asymptotic response at large time showed that
 this is determined by the complex group velocity becoming zero and that this
 corresponds to a square-root branch point of wave number .  If the absolute growth rate ,
 w i   at the branch point is positive and the branch point results from the coalescence of
 an upstream and downstream mode ,  the instability is absolute .  Such absolute instability
 grows into a limit cycle of oscillation which is the sinuous mode of the Karman vortex
 street .  There is a change from absolute instability in the near wake to convective
 instability further downstream .  Nakaya (1976) ,  Koch (1985) and Chomaz  et al .  (1988)
 suggested that a resonance builds up ,  involving wave motions between the body and a
 reflection site in the wake .  The nature of this site of instability in the wake ,  which
 involves waves travelling in both directions ,  is the current preoccupation .

 Koch (1985) proposed that the source in the wake is the region where the separated
 boundary layers surrounding the closed wake-bubble interact at the end of the bubble .
 Monkewitz (1988) showed that prior to the onset of the global instability ,  which results
 in the vortex shedding ,  there is (at lower Re) a region of absolute instability in the near
 wake .  This ,  he shows ,  probably first occurs where the reversed flow is a maximum .  As
 Re increases this region grows in size until it encompasses the generation site at the
 region of interaction at the end of the bubble .  Monkewitz (1988) determines the
 Reynolds numbers of these transitions ,  which are in reasonable agreement with
 observations .

 In wind tunnels with low turbulence levels the critical Reynolds number ,  Re c ,  for the
 start of oscillations in the wake is found to be 49 [see for example Provansal  et al .
 (1987)] .  This value is in agreement with the absolute instability calculations of Jackson
 (1987) and Monkewitz (1988) .  Provansal  et al .  (1987) also show from absolute
 instability theory that the growth rate factor is (Re-Re c ) / (10  3  Re) .  This will be shown
 to concur with the present results at Re  .  Re c .  In towing tanks ,  uneven towing speed is
 usually responsible for a reduced value of Re c  of about 35 (Gerrard 1978) .  Because of
 the ef fect of small disturbances which are dependent on the particular experimental
 arrangement ,  the determinations of Re c  have produced conflicting results .  Plaschko ,
 Berger & Peralta-Fabi (1993) reproduce photographs of Homann (a student of Prandtl)
 in which gathers ,  as found by Taneda (1956) ,  are apparent at Re  5  16 ? 75 ;  an
 asymmetrical near-wake at Re  5  15 ? 8 and a wake with a wavy dye trace along its
 centreline at Re  5  27 ? 4 .  Homann’s photographs in the book by Prandtl (1952) ,
 however ,  show a perfectly straight dye trace in the wake at Re  5  32 .  Whether or not
 the observations of wake oscillations at these low Reynolds numbers are the result of
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 artifacts of the particular experiment ,  it is clear that a numerical study of these flows
 would be an illuminating exercise .

 2 .  EXPERIMENTS

 The experimental observations of Al-Khafaji (1989) show that the Karman vortex
 street can be produced at low Reynolds number behind a circular cylinder when a small
 diameter control cylinder is placed ,  with its axis parallel to the main cylinder ,  in certain
 positions in the near wake .  The experiments follow closely those of Strykowski &
 Sreenivasan (1985 ,  1990) ,  with the important dif ference that they produced a stable
 near wake in a range of Re above the critical Reynolds number ,  Re c ,  at which
 oscillations naturally start .  Our experiments were conceived from the entirely opposite
 motive of encouraging oscillations in a steady wake at Re  ,  Re c .  Our original intention
 was to pulsate a small diameter deformable cylinder placed in the near wake of the
 main cylinder .  In preparation for these experiments the investigations of the ef fect of
 placing a rigid cylinder in the wake seemed to be a logical starting point .  The Re of 29
 was chosen as being well above the point ,  Re  5  25 ,  at which from the work of
 Monkewitz (1988) ,  one might expect a region of absolute instability to exist in the near
 wake and significantly below the lowest Re c  5  35 observed in our towing tank .  The Re
 of 29 is also above the value of 20 at which cylinder oscillations produced an oscillating
 wake in the experiments of Taneda (1963) and Nishioka & Sato (1978) .

 A single circular cylinder of 12 ? 7  mm diameter was towed with its axis vertical and
 projecting through the surface of the water in a towing tank .  The tank was 4000  mm
 long by 750  mm wide and the water depth in all experiments was 381  mm .  The aspect
 ratio of the cylinder was 30 and the blockage ratio 1 ? 7% .  There was a constant gap of
 1  mm between the cylinder and the bottom of the tank .  This arrangement coupled with
 a clean water surface promotes vortex shedding parallel to the cylinder axis (Slaouti
 and Gerrard 1981) .  The tank was insulated and covered to reduce background motions
 produced by thermal convection .  The water temperature variation was less than 0 ? 2 8 C
 and observations were made at the beginning of the day .  In these conditions the
 background velocities were of large scale and less than 0 ? 08  mm / s (3 ? 5% of the cylinder
 speed of 2 ? 3  mm / s) .  A second run could not be made less than 4  h after the first if these
 requirements of background motion were to be met .  The control rods placed in the
 near wake were of diameter  d c .  In most cases  d c / d  was 0 ? 125 where  d  is the diameter of
 the main cylinder .  Smaller values of  d c   were used in one position of the control rod .
 Obtaining a constant towing speed is very dif ficult ,  and it is not certain that the cylinder
 and control rod did not possess a velocity fluctuation .  The more slender control rod
 may thus have been caused to vibrate .

 The method of experimentation was to observe flow visualization produced by dye .
 In most cases the dye was introduced slowly by injecting a cloud of dye dissolved in
 water and mixed with a little methanol to make it neutrally buoyant .  A short settling
 time was allowed for the disturbance caused by the injection to subside .  The dye
 occupied a volume just ahead of the stationary cylinder and covered all but the top and
 bottom 50  mm of the depth .  When the run started impulsively from rest by engaging a
 clutch ,  dye entered the separation bubble behind the cylinder in the first stages of the
 motion .  In the other method used ,  dye solution mixed with a minute amount of
 detergent was allowed to run onto the surface of the water at the front of the cylinder
 via a hypodermic tube .  The method is described in detail by Al-Khafaji & Gerrard
 (1989) .  The flows observed on the surface and below it were in agreement .
 Photographs were taken with a camera mounted on the towing carriage .



 Figure 1 .  Flow visualization of the wake oscillations at Re  5  29 .  Control rod at  R  5  5 :  (a)  d c  / d  5  0 ? 125 ;  (b)
 d c  / d  5  0 ? 1 ;  (c)  d c  / d  5  0 ? 09 .



  

 Figure 2 .  Flow visualization of the wake at Re  5  29 .  Control rod in contact with the rear of the cylinder :
 (a) the near wake ;  (b) the wake at  r  5  140 .
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 The range of  R  of control rod position on the wake axis for which oscillations were
 observed was found to be 3 ? 6 to 6 ? 25 .  The definition of the symbols is to be found in
 the nomenclature in the appendix .  Figure 1 clearly shows wake oscillations produced
 with the control rod on the wake centreline at a gap size of 2 ? 0 d ( x  5  5) .  The
 photograph was taken with dye solution fed onto the water surface in front of the
 cylinder .  Before the photograph was taken the dye flow was switched of f by means of a
 solenoid valve [visible in Figure 1(b ,  c)] .  Large oscillations are clearly seen .  The
 oscillations with the control rod in this position were stronger than those obtained with
 other positions .  At other positions of the control rod on the wake axis ,  oscillations
 developed downstream and not at the control position .  Figure 1(b ,  c) shows that the
 ef fect of reducing the control rod diameter was to decrease the amplitude of the wake
 oscillations .  With  d c  / d  5  0 ? 014 the near wake oscillation disappeared .

 In one set of observations which are shown in Figure 2 ,  the control rod
 ( d c / d  5  0 ? 125)   was in contact with the cylinder surface at the rear stagnation point .
 Flow visualization was achieved by dye washed from the control rod .  Dye paste was
 painted onto a mid-span section and allowed to dry before immersion of the cylinder .
 The run started after a short settling time during which disturbances subsided .
 Oscillations were almost absent from the near wake but developed downstream as seen
 in Figure 2(a ,  b) .  The spots of dye seen in Figure 2(b) were due to the accumulation of
 dye and its fall under gravity .

 In the experiments at Re  5  29 the control rod positions which produced wake
 oscillation were on the wake axis only ,  and only at  R  5  1 and 3 ? 6  ,  R  ,  6 ? 25 .  Various
 positions of f the wake axis produced no oscillation even those with  R  5  4 ? 5 and 6 but
 only 0 ? 5 a  of f the axis .

 3 .  NUMERICAL STUDY

 The numerical analysis uses a scheme developed by Benson  et al .  (1989) in which the
 convection and dif fusion terms of the Navier – Stokes equations are separately solved at
 each time step .  Vortices are placed on the cylinder surface to represent a vortex sheet
 which satisfies the no-slip condition .  These vortices are convected with velocities
 determined from the solution of the convection Poisson equation obtained with a Fast
 Fourier Transform Poisson Solver library programme (Le Bail 1972) .  The vortices are
 then dif fused and redistributed ,  new vortices being formed at the grid intersections due
 to the spreading in the dif fusion time step which is generally twice as long as the
 convection time step .  The convection mesh is a radially exponentially expanding polar
 mesh .  The dif fusion and redistribution is performed on an expanding polar mesh in the
 boundary region (of width equal to one cylinder radius) and also on an overlapping
 rectangular mesh of fixed spacing .  The values of quantities are nondimensionalized
 with the freestream speed and the cylinder radius .  The Re values quoted are based on
 cylinder diameter .  Test programmes used to validate the method and its convergence
 are included in the paper of Benson  et al .  (1989) .

 A vortex pair disturbance was used to represent a control rod in the wake .  The
 strength of the two vortices was determined from the velocities at the adjacent mesh
 points .  Their separation represents the size of the body .  This is crudely the same
 process as at the cylinder surface .  The control body vortices were inserted at each
 convective time step and after their introduction they were convected ,  dif fused and
 redistributed like all the other vortices .  The ensuing disturbance to the flow became
 unstable for a range of positions of the vortex pair and the control vortex pair
 asymmetry (CVA ,  the sum of the two vortex strengths) grew exponentially .  In all but



 J .  H .  GERRARD 276

kVR1

0.0483 R

R

1

VR2

VT

π/65 0.0292 R

θ = π

VR1

–kVR2

 Figure 3 .  Assignment of control vortices .

 one case the vortices were centred on the wake axis .  The vortex strength was a factor ,
 k ,  times the radial velocity at one mesh length from the axis ( k  5  0 ? 03 ,  0 ? 04 ,  0 ? 05 ,  0 ? 08
 and 0 ? 12) .  Only one computation with  k  5  0 ? 12 was made .  The geometry of the control
 body and the vortices introduced are shown in Figure 3 .  The control vortex strength ,
 CVS ,  was determined by the radial velocities  V R 1  and  V R 2  which are initially equal since
 the wake is symmetrical .  The control vortices were placed at the positions  Ú 0 ? 029 R ( <
 0 ? 6  3  0 ? 0483)   and convected downstream ;  their strength  kV R   is equivalent to the
 semi-circumference of the control body times the mean surface velocity over that half
 of the body .  The presence of vortices produces a wake asymmetry (when  V R 1  ?  V R 2 )
 which grows with time ,  and oscillations develop .  The dif ference in the strength of the
 vortices on the two sides of the body produces an induced crossflow velocity at the
 cylinder .  If the vortices from the control body were not convected and dif fused ,  their
 presence had no ef fect .  Later consideration after the work was completed revealed that
 this routine produces vortices which are too strong .  The vortices were shed from the
 body at full strength and this neglects the weakening by interaction in a formation
 region .  It is not clear that a better model could be produced simply by reducing  k .

 The work of Coutanceau & Bouard (1977) on the unsteady flow past a circular
 cylinder started from rest ,  has important applications to the present work .  In these
 flows at low Re the bubble-like symmetrical recirculating region behind the body grows
 in length with time  T .  At Re  5  31 they quote growth from  L  5  0 at  T  5  0 to 1 ? 4 at
 T  5  4 ,  2 ? 5 at  T  5  8 and to its final position of 3 ? 1 at  T  $  16 .  Their closed wake shape at
 Re  5  30 is plotted in Figure 4 which also shows the points at which the near-wake
 velocity asymmetry was determined in the present work .  The velocity asymmetry is the
 dif ference between tangential velocity values symmetrically disposed about the wake
 centreline and when on the axis ,  is the value of  V T  :  V T   is shown on Figure 3 .  Beyond
 the closed wake the velocity on the axis decreases with distance down the wake .  The
 published curves (Coutanceau & Bouard 1977) are linear down to 0 ? 2 U  where the
 measurements end .  Extrapolating the lines to zero velocity has the following result :
 u  5  0   at  r  5  5 at  T  5  4 ? 4 , r  5  8 at  T  5  7 ? 6 , r  5  12 ? 5 at  T  5  14 ? 4 and  r  5  17 at  T  5  21 .
 This is a linear variation .  As a result of this the velocity on which CVS is based
 increases with time at a fixed  R  and at large  R  the growth of CVS is delayed .

 4 .  RESULTS AT A REYNOLDS NUMBER OF 29

 The computation was made on the Amadahl 5890 of the Manchester Computing
 Centre .  The central processor time used for runs up to  T  5  60 was about 2000  s .  The
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42 3 r

 Figure 4 .  Evolution of the closed wake shape at Re  5  30 from Coutanceau & Bouard (1977) at times
 T  5  2 ? 4 ,  4 ? 8 and 12 ? 6 .  The points show positions at which velocity asymmetry was determined :   s ,  for Figure

 9 ;   d ,  for Table 2 .

 development of the flows was monitored by determination of the lift and drag
 coef ficients ,   C L   and  C D  ,  of the cylinder ,  the velocity asymmetry at pairs of points
 equidistant from the wake axis ,  the control vortex pair asymmetry ,  CVA ,  and the
 vorticity on the wake axis .

 Leaving aside the vorticity development for the moment ,  Figures 5 to 9 show the
 time variation of the other quantities for the control on the wake axis at  R  5  5 and
 k  5  0 ? 04 .  Figure 5 shows the exponentially growing  C L   (full line) which only reaches a
 small amplitude by  T  5  60 .  Also shown is the  C L   obtained with no control in the wake .
 The variation of the control asymmetry ,  shown in Figure 6 ,  is much smoother and this
 was always the case .  The strength of one of the control vortices CVS is shown in
 Figure 7 .  The magnitude of the strength decreases as the flow developed because the
 radial velocity decreases with time .  Radial and tangential velocities refer to directions
 on the polar mesh centred on the main cylinder as shown in Figure 3 .  Initially the
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 Figure 5 .  C L   development for  k  5  0 ? 04 and  R  5  5 ? 0 .  Broken curve :   k  5  0 .
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 Figure 6 .  Control vortex asymmetry for  k  5  0 ? 04 and  R  5  5 ? 0 .
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 Figure 7 .  Control vortex strength for  k  5  0 ? 04 and  R  5  5 ? 0 .
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 Figure 8 .  C D   development for  k  5  0 ? 04 and  R  5  5 ? 0 .
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 Figure 9 .  Near-wake velocity asymmetry for  k  5  0 ? 04 and  R  5  5 ? 0 .

 control position is outside the bubble-like recirculating region behind the cylinder .  This
 bubble grows with time and if  R  ,  4 ? 65 the control vortices change sign (to become
 positive in Figure 7) when the end of the bubble passes the control position .  In the time
 shown  C D   has not reached its final level as seen in Figure 8 .  The dif ference in
 circumferential velocity of four pairs of points symmetrically placed with respect to the
 wake axis is shown in Figure 9 .  This also grows exponentially .  The phase dif ference
 between the quantities so far presented is significant and will be discussed .  In all cases
 investigated the Strouhal number was between 0 ? 10 and 0 ? 13 ,  which is higher than the
 value 0 ? 067 extrapolated from naturally oscillating wakes .  In the experiment at
 Re  5  29 ,  the Strouhal numbers of 0 ? 06 and 0 ? 12 were observed .  It is possible that the
 lower value of the Strouhal number is a convective instability which develops
 downstream .

 One case in which the control was of f the wake axis was investigated for the
 conditions  k  5  0 ? 02 , R  5  5 , x  5  4 ? 85 and  y  5  1 ? 215 .  As might be expected ,  one sees
 from Figure 17 that a steady lift is produced .  The large initial oscillations slowly decay .
 The experiments showed no oscillation for this position of the control rod .

 4 . 1 .  S EQUENCE OF THE  E VENTS  L EADING TO  O SCILLATION

 The origin of the growth of disturbances is the aim of the investigation .  We look first ,
 therefore ,  for CVS factors  k  5  0 ? 04 and 0 ? 05 ,  at the relative phases of  C L  ,  CVA and
 the near-wake velocity asymmetry .  After the flow starts from rest ,  the first occurrence ,
 see Figure 9 ,  is the departure from zero of the near-wake velocity asymmetry from zero
 at  T  5  0 .  At these early times and at this stage of the development of the work ,  the
 oscillations of the near wake were not related to the control vortex asymmetry ,  which
 had not yet begun to grow .  This is followed by the departure from zero of CVA .  The
 following maxima and minima of CVA lead those of  C L   and ,  as we shall demonstrate ,
 become related to the near-wake velocity asymmetry .  At the first maximum of CVA
 the lead is 4 ? 1  Ú  0 ? 4 (r . m . s .  deviation of 10 determinations) and at the fourth
 extremum ,  5 ? 7  Ú  0 ? 4 .

 In the later computations in which the numerical noise was much reduced ,  a
 clear connection between CVA and the near-wake velocity asymmetry was found .
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 T ABLE  2
 Times  T c   of the peaks of control vortex asymmetry CVA compared with the mean times  T y   of
 velocity asymmetry at all the points shown in Figure 4 .   s s  5  r . m . s .  deviation of  T y   from the mean

 value

 Control
 k  R

 0 ? 08  3 ? 43
 T c
 T y

 s s

 11 ? 7
 11 ? 72
 0 ? 2

 16 ? 0
 17 ? 14
 0 ? 36

 23 ? 1
 23 ? 08
 0 ? 42

 27 ? 2
 28 ? 02
 0 ? 36

 34 ? 0
 34 ? 29
 0 ? 54

 39 ? 8
 39 ? 57
 0 ? 47

 44 ? 4
 45 ? 17
 0 ? 44

 50 ? 2
 50 ? 78
 0 ? 4

 T c  2  T y

 s s
 2 0 ? 1  2 3 ? 2  0  2 2 ? 8  2 0 ? 5  2 0 ? 5  2 1 ? 75  2 1 ? 45

 0 ? 08  5 ? 93  T c
 T y

 s s

 27
 26 ? 3
 0 ? 9

 33
 33 ? 6
 0 ? 9

 42
 40 ? 0
 2 ? 2

 T c  2  T y

 s s
 0 ? 8  2 0 ? 7  0 ? 9

 0 ? 05  5 ? 93  T c
 T y

 s s

 2 ? 5
 2 ? 5
 0 ? 7

 9 ? 7
 10 ? 2
 1 ? 1

 17 ? 1
 17 ? 8

 1 ? 0

 24 ? 8
 25 ? 9
 1 ? 1

 35
 34 ? 1
 1 ? 0

 44
 42 ? 8
 1 ? 1

 52 ? 7
 51 ? 6
 1 ? 1

 T c  2  T y

 s s
 0  2 0 ? 4  2 0 ? 7  2 1 ? 0  0 ? 9  1 ? 1  1 ? 0

 Mean dif ference  5  2 0 ? 47 s s

 In Table 2 the times ,   T c  ,  of the peaks of CVA are compared with  T y  ,  those of the
 velocity asymmetry at all the points in Figure 4 with the exception of the point at the
 shoulder of the cylinder .  The times  T y   varied with distance  x  downstream .  In the range
 of  x  in Figure 4 ,  as  x  increases ,   T y   rises by d T ,  falls by the same amount ,  to rise again
 also by d T .  At the control position  R  5  5 ? 93 ,  d T  <  3 and at  R  5  3 ? 43 , dT  <  1 .
 Comparison of  T c   with the mean values of  T y   in Table 2 shows that the peaks are
 approximately in phase .  This supports the idea that when the control takes over ,  the
 fundamental driving mechanism is the oscillation at and near the body produced by the
 velocity field of the control asymmetry .  The near wake responds immediately :  the lag
 of  C L   is due to change in lift taking time to respond to the velocity field .

 Figure 10 shows the positions of the maxima and minima of the wake velocity
 asymmetry as functions of  T  for the control absent and present .  It is noteworthy that
 the time development of velocity asymmetry in the wake is similar ,  whether the control
 is absent or present ;  the maxima and minima are delayed without the control .  These
 undulations convect downstream but ,  with control absent ,  produce no oscillating lift .
 The parallel inclined lines correspond to a speed of 0 ? 86 ,  which is the same as the speed
 of particles from the outer edge of the boundary layer when  T  .  3 .  These particle paths
 for control present (outer curve) and absent are shown in Figure 11 .  We see from
 Figure 10 that the waves of velocity asymmetry generally convect downstream with the
 flow .  The first maximum with the control present ,  however ,  appears all over the near
 wake region instantaneously when the control is present ,  but not when it is absent .  It
 was remarked above that the control vortices induce a crossflow at the body .  The
 region of crossflow induction is felt all over the near wake at the same time .  The region
 of instantaneous appearance of the first minimum with control present is much smaller
 than for the first maximum .  The second maximum is entirely convected .
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 Figure 10 .  Distance-time relationships of velocity asymmetry maxima and minima .  Notation as shown
 above .

 Table 3 shows the phase lead of the velocity asymmetry with respect to  C L .  The
 value of velocity asymmetry departs from zero at time zero whether the control is
 present or not ,  when driven by numerical noise .  Upstream of the control ,  the first
 maximum of the velocity asymmetry at both values of  y  occurs at approximately the
 same time before that of  C L .  This implies that what happens at the cylinder at this
 early time is imposed by the whole of the near wake with equal time delay and this
 delay changes as the instability grows .  The bias of  C L   to negative values in Figure 5 was
 dependent on the initial conditions .  The results of Figure 5 are presented because the
 k  5  0   case was available for these .  Later refinements to the access to the Poisson solver
 produced values of  C L   at early times which were very close to zero and smoothly
 varying ,  but the  k  5  0 case was not repeated .

 The development shown in Figures 5 to 9 was obtained with a single precision
 computation .  At Re  5  35 single and double precision was used with  k  5  0 ? 03 at
 R  5  3 ? 43 .  The variation of the oscillating quantities ,   C L  ,  CVA and near-wake velocity
 asymmetry showed similar trends but were 10 2 10  smaller for double precision ,  whilst
 C D   and CVS (the strength of one of the control vortices) were the same .  The
 near-wake velocity asymmetry obtained at all the points shown in Figure 4 exhibited a
 slight oscillation when  T  .  8 and had larger values at the points further downstream .
 These results suggest that oscillation starts in the near wake but amplifies when the
 disturbance reaches the control position ,  which then feeds back oscillations to the near
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 Figure 11 .  Paths of particles originating from  x  5  0 , y  5  2 ? 6 at  T  5  0 .  Particle positions at later times are
 shown by the values of  T .  Streamlines obtained at  T  5  2 ? 5 .  Outer curve is for the control present ;  inner curve

 for control absent .

 T ABLE  3
 Times by which the near-wake velocity asymmetry
 leads  C L   at positions  x , y .  Control vortex  k  5  0 ? 04 at

 R  5  5( x  5  5 ,  y  5  0)

 y  5  1
 Time lead at

 x
 1st

 maximum
 1st

 minimum
 2nd

 maximum

 0 ? 4
 0 ? 9
 1 ? 6
 2 ? 5
 3 ? 15
 4 ? 4
 6 ? 28

 3 ? 0
 3 ? 1
 3 ? 0
 2 ? 7
 3 ? 2
 3 ? 0
 2 ? 3

 5 ? 0
 5 ? 5
 5 ? 2
 4 ? 5
 3 ? 3
 3 ? 0
 0 ? 5

 4 ? 5
 3 ? 5
 3 ? 5
 3 ? 1
 2 ? 5
 1 ? 2

 2 1 ? 5

 y  5  0 ? 25
 1 ? 3
 1 ? 9
 2 ? 9
 4 ? 2
 6 ? 2

 10 ? 3

 2 ? 5
 2 ? 7
 3 ? 1
 3 ? 0
 1 ? 9

 2 2 ? 8

 6 ? 2
 5 ? 6
 5 ? 0
 3 ? 0
 0 ? 25

 2 4 ? 0

 6 ? 5
 4 ? 8
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 Figure 12 .  Particle paths from  x  5  0 , T  5  0 and instantaneous streamlines at time  T  5  7 ? 45 for  k  5  0 ? 05 ,
 R  5  5 ? 0 .

 wake .  CVS reached an approximately constant level at  T  5  10 :  CVA and  C L   grew
 rapidly at  T  .  20 .

 The vortex strength on the wake axis was determined with the control strength equal
 to 0 ? 05 at  R  5  5 .  The background level was the cut-of f level of the vortex redistribution
 which was set at 10 2 5 .  The vortex strength on the near wake axis appeared at  T  5  7 for
 2 ? 5  ,  r  ,  5   and at  T  5  10 had larger values in the range 2  ,  r  ,  6 .  These times of
 appearance coincide with the arrival of boundary layer particles in the region of the
 wake axis inside the region of the wake bubble as shown in Figure 12 .

 4 . 2 .  T HE  E XPONENTIAL  G ROWTH AND  D ECAY OF  O SCILLATIONS

 The time variation of  C ̂  L   and  . CVA during growth and decay were found to be
 exponential ,  as Figure 13 shows for  C ̂  L .  Figure 14 shows that the values of
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 Figure 13 .  Growth of  C ̂  L   to  T  5  50 with  k  5  0 ? 03 at  R  5  5 ? 0 and decay with  k  5  0 at  T  .  50 .
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 Figure 14 .  Exponential growth rate as a function of control position .

 m  5  d  ln  C ̂  L / d T  and d  ln  . CVA / d T  for these two quantities were essentially the same for
 the same  R  and CVS (or  k ) .  Most of the results were obtained with  k  5  0 ? 04 .
 Oscillations did not grow when  R  ,  4 in the time up to  T  5  60 .  The variation with  R  of
 the exponent  m  has a broad maximum ,  rising from 0 ? 02 at  R  5  4 to about 0 ? 8 at
 R  5  6 ? 35   (the critical position below which splitter plates af fect the shedding at higher
 Re is 5 ? 1  Ú  0 ? 3) ;   m  fell beyond this  R  to 0 ? 05 at  R  5  14 .  It was noticed that the start of
 the exponential rise was delayed in the following cases :  to  T  5  20 at  R  5  4 ? 1 ,  to  T  5  26
 at  R  5  5 ? 0 ,  to  T  5  38 at  R  5  8 ? 1 and to  T  5  29 at  R  5  12 ? 6 .  This is the behaviour
 expected from the work of Coutanceau & Bouard (1977) on unsteady wakes .  The
 exponential growth rate was found to increase with  k  as shown in Figure 15 .  The
 approximate relation obtained from this plot is

 m  5  0 ? 026  exp(25 k ) ,

 from which it is seen that the growth rate increases exponentially with  k .  We see from
 Table 4 that saturation occurs earlier and the saturation amplitudes increase as  k
 increases .  Figure 16 shows exponential growth to saturation corresponding to the first
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 T ABLE  4
 Amplitude growth to saturation

 k  R  Time of  Saturation values
 saturation  C ̂  L

 . CVA

 0 ? 03
 0 ? 08
 0 ? 08
 0 ? 12

 5 ? 0
 3 ? 4
 4 ? 5
 4 ? 4

 100
 49
 45
 28

 0 ? 4
 0 ? 74
 1 ? 5
 2 ? 75

 0 ? 01
 0 ? 045
 0 ? 05

 not determined
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 Figure 16 .  Growth to saturation for  k  5  0 ? 03 , R  5  5 ? 0 .
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 Figure 17 .  C L  , k  5  0 ? 02 control at  R  5  5 ? 0 for  x  5  4 ? 85 , y  5  1 ? 215 .

 entry in Table 4 .  When the control vortex asymmetry has amplified the control vortex
 strength oscillates also .  In the cases of the larger values of  . CVA obtained with  k  5  0 ? 08
 the control vortex strength oscillated also with amplitudes of 0 ? 030 and 0 ? 033 .  When
 k  5  0 ? 04   the value of  C ̂  L   at  T  5  60 and  R  ,  5 was 1 ? 5 to 3  3  10 2 3 .  At this value of  k , C ̂  L

 had a broad maximum of 8  3  10 2 3  when  R  5  8 .  This variation of  C ̂  L   with  R  is similar to
 the variation of  m  referred to above and shown in Figure 14 .  It is at first sight
 surprising that the control was ef fective at the position  R  5  14 for which  C ̂  L   was
 4  3  10 2 3 ,  however the wake is oscillating at this position which produces a strong
 vortex pair .  The control vortices have a velocity field which falls of f only inversely with
 distance .

 5 .  RESULTS OF VARIATION OF REYNOLDS NUMBER

 After completion of the work on flows at Re  5  29 ,  attention was directed to the
 analysis of flows for a range of Re .  At Re  $  53 ,  saturation values of  C ̂  L   with no control
 in the wake resulted from development from the numerical noise or from an initial
 asymmetry as in Benson  et al .  (1989) up to a Re of 200 .  These lift coef ficients values
 closely followed the relation

 C ̂  2
 L  5  2 ? 78  3  10 2 3 (Re  2  49) .

 This is of the form expected from stability considerations as given ,  for example ,  by
 Schumm  et al .  (1994) .

 Further work has concentrated on the range 15  #  Re  #  60 .  At low Re ,  growth was
 followed up to  T  5  50 with  k  5  0 ? 03 and  R  5  5 :  the control was then switched of f and
 the decay followed .  At Re  $  45 ,  growth initiated by numerical noise was studied .  At
 Re  5  45 and 53 the waveform was irregular and scarcely left the background level by
 T  5  115   and so growth and decay ,  as at lower Re ,  was investigated also .  At Re  5  53 ,
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 Figure 18 .  Growth rate as a function of Reynolds number :   j ,   C ̂  L   for  k  5  0 ? 03 , R  5  5 ? 0 ;   h ,  . CVA for
 k  5  0 ? 03 , R  5  5 ? 0 ;   3 ,  no control vortices ;   1 ,  decay at  T  .  50 after growth as in  j ;  — — — ,  Provansal  et al .

 (1987) ,  s  r  5  (Re-Re c ) / 10Re .

 the decay exponent plotted in Figure 18 ended at  T  5  120 and thereafter the amplitude
 was constant indicating that Re c  ,  53 .  Strouhal numbers ,   S ,  are plotted in Figure 19 .  At
 all these Re( # 60) ,  the Strouhal number varied during growth and decay .  At Re  .  35
 the final values of  S  were close to the relationships of Roshko (1954) and Williamson
 (1988) as seen in Figure 19 .  During decay ,  there is only a slight reduction in  S  at the
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 Figure 19 .  Strouhal number as a function of Reynolds number .  Symbols as in Figure 18 .  — ,  Universal
 curve ,  Roshko (1954) and Williamson (1988) and its extrapolation to Re  ,  Re c .
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 lower Re of 15 and 20 so that the values of S lie above the extrapolation of the curves
 of Roshko & Williamson .

 When there is a control in the wake ,  the rate of growth exponent  m  depends on the
 strength ,   k ,  of the control vortices .  At higher Re ,  when the growth is from numerical
 disturbances ,   m  depends on the magnitude of these .  At Re  5  15 and 20 ,  m was found to
 depend on  k  and  R .  The growth exponent is plotted in Figure 18 for  k  5  0 ? 03 at  R  5  5 .
 The  m  values show a large reduction only for Re much less than Re c .

 During decay with the control vortices removed for  T  .  50 the exponent  m  shows
 fair agreement with  s r   the bifurcation parameter in the Landau truncation of the
 stability equation determined by Provansal  et al .  (1987) for Re  .    40 approximately .
 The curves in Figure 18 diverge at lower Re .

 6 .  CONCLUSIONS

 It had been observed in experiments in a towing tank that it is possible to induce wake
 oscillations by inserting a control rod on the centreline of the wake of a circular
 cylinder at Re less than the critical Reynolds number ,  Re c ,  of 35 .  In a low-turbulence
 wind tunnel the value of Re c  is found to be 49 .  A numerical analysis of a model of the
 same arrangement was therefore initiated at Re  5  29 .  The calculated lift coef ficient
 fluctuated erratically with small amplitude when no control was present in the wake .
 These fluctuations ,  due to numerical inexactness ,  are considered to be the seed of the
 oscillations found when the vortex pair representing the control body was included in
 the model .  With the control in the wake the lift coef ficient amplitude ,   C ̂  L  ,  grew
 exponentially :   C ̂  L  ~  exp( mT  ) .  The growth factor ,   m ,  increased with increasing strength ,
 k ,  of the vortices representing the control body but only when the vortices were shed
 from the control body and dif fused as they were convected downstream .  At large
 values of  k , C ̂  L   values were greater than the spontaneously produced values at high Re .
 Growth of  C ̂  L   was obtained with a wide range of axial control positions .

 The order of growth events in the near wake was analysed .  The velocity asymmetry ,
 the dif ference in flow speed at points at equal but opposite distances from the wake
 centreline at the same downstream position ,  was the first occurrence observed .  The
 velocity asymmetry convected downstream ,  but at  k  .  0 the initial velocity asymmetry
 appeared over the whole near wake at the same time before ,  at later times ,  convecting
 downstream .  Velocity asymmetry was followed by the appearance of asymmetry at the
 control :  the two control vortices became of dif ferent strength .  The growth of  C L

 occurred when asymmetric velocities in the near wake were those of the velocity field
 of the control asymmetry .  Most results were obtained with the control vortex strength
 factor  k  5  0 ? 04 and the control positioned at  R  5  5 .  These results showed that the first
 maximum of the near-wake velocity asymmetry led that of  C L   by 2 ? 93  Ú  0 ? 02 and that
 of CVA led  C L   by 4 ? 1  Ú  0 ? 4 .  The region of absolute instability envisaged by Monkewitz
 (1988) starts at the position of maximum reversed flow at  r  5  2 ? 3 (Coutanceau &
 Bouard 1977) and spreads as Re increases .  The phase dif ferences above indicate that ,
 at the low Re considered here ,  the absolutely unstable region communicates with the
 control ,  producing asymmetry there which then af fects the flow at the surface of the
 body and hence  C L .  Control vortices at small values of  r  produced no exponential
 growth .  To test the Monkewitz theory one should strictly introduce the disturbance
 after the steady flow is established rather than at  T  5  0 ,  but if there has been no
 ef fect up to the steady flow establishment time the control presence should start to
 have an ef fect as if it was just introduced .  In the natural onset of oscillations at
 higher Re ,  triggered by small disturbances ,  Koch (1985) has suggested that the site of
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 first asymmetry is at or just beyond the end of the wake bubble to where the region of
 absolute instability has spread .

 The ef fect of variation of Re below and above the Re  5  29 value was investigated .  At
 Re  $  53 the growth factor ,  without control in the wake ,  was found to have the value
 (Re  2  Re c ) / 10 Re (with Re c  5  49) as predicted by absolute instability theory (Provansal
 et al .  1987) .  The Strouhal numbers were in agreement with the well-established
 experimental variation with Re .  At Re  ,  29 the growth rate decreased and during
 decay ( k  5  0 , T  $  50) lay above the curve of Provansal  et al .  The Strouhal numbers
 remained at values close to 0 ? 1 .

 In the experiments ,  there were possibilities of the forcing of oscillations by factors
 dependent on the particular experimental arrangement .  It is possible that there are
 numerical instabilities which contribute to the behaviour of the numerical results ,  but
 double precision computation ,  though considerably reducing the rate of growth did not
 inhibit growth .  Even though any computing scheme will have numerical noise it would
 be desirable to model the flow with a dif ferent scheme .  The first priority for
 improvement is better modelling of shedding from the control body .  The present
 vortex shedding from the control body is too simplistic .  Vortices are shed from the
 body rather than after interaction in a formation region which results in weaker
 vortices being shed .
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 APPENDIX :  NOMENCLATURE

 a  cylinder radius
 d  cylinder diameter
 U  free-stream speed

 The following are nondimensionalized with  U  and  a :

 r  radial coordinate ,  distance from cylinder centre
 x  coordinate along the wake axis
 y  coordinate perpendicular to  x ,  origin cylinder centre
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 R  radial coordinate of control vortex pair
 T  time
 CVA  control vortex pair asymmetry

 sum of the pair of vortex strengths
 CVS  control vortex strength

 k  3  radial velocity one mesh length from the wake axis
 k  CVS factor

 The following are nondimensionalised with  U  and  d ;

 Re  Reynolds number
 Re c  critical Re for first appearance of naturally occurring oscillating wake
 C L  lift coef ficient
 C D  drag coef ficient
 ∧  as in  C ̂  L   and  . CVA signifies amplitude


